Ammonia regulates VID30 expression and Vid30p function shifts nitrogen metabolism toward glutamate formation especially when Saccharomyces cerevisiae is grown in low concentrations of ammonia.

نویسندگان

  • G K van der Merwe
  • T G Cooper
  • H J van Vuuren
چکیده

The GATA family proteins Gln3p and Gat1p mediate nitrogen catabolite repression (NCR)-sensitive transcription in Saccharomyces cerevisiae. When cells are cultured with a good nitrogen source (glutamine, ammonia), Gln3p and Gat1p are restricted to the cytoplasm, whereas with a poor nitrogen source (proline), they localize to the nucleus, bind to the GATA sequences of NCR-sensitive gene promoters, and activate transcription. The target of rapamycin-signaling cascade and Ure2p participate in regulating the cellular localization of Gln3p and Gat1p. Rapamycin, a Tor protein inhibitor, like growth with a poor nitrogen source, promotes nuclear localization of Gln3p and Gat1p. gln3 Delta and ure2 Delta mutants are partially resistant and hypersensitive to growth inhibition by rapamycin, respectively. We show that a vid30 Delta is more rapamycin-sensitive than wild type but less so than a ure2 Delta. VID30 expression is modestly NCR-sensitive, responsive to deletion of URE2, and greatly increases in low ammonia medium. Patterns of gene expression in a vid30 Delta suggest that the Vid30p function shifts the balance of nitrogen metabolism toward the production of glutamate, especially when cells are grown in low ammonia. CAN1, DAL4, DAL5, MEP2, DAL1, DAL80, and GDH3 transcription is down-regulated by Vid30p function with proline as the nitrogen source. An effect, however, that could easily be indirect.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of nitrogen assimilation in Saccharomyces cerevisiae: roles of the URE2 and GLN3 genes.

Mutations in the GLN3 gene prevented a normal increase in the NAD-glutamate dehydrogenase and glutamine synthetase levels in glutamate-grown Saccharomyces cerevisiae cells, whereas mutations in the URE2 gene resulted in high levels of these enzymes in glumate- and glutamine-grown cells. A ure2 gln3 double mutant had low levels of glutamate dehydrogenase and glutamine synthetase in cells grown o...

متن کامل

Nitrogen-regulated transcription and enzyme activities in continuous cultures of Saccharomyces cerevisiae.

Variations in the transcription of nitrogen-regulated genes and in the activities of nitrogen-regulated enzymes of the yeast Saccharomyces cerevisiae were studied by changing the carbon and nitrogen fluxes. S. cerevisiae was grown in continuous culture at various dilution rates (D) under nitrogen limitation with NH4Cl as sole nitrogen source. With an increase in D from 0.05 to 0.29 h-1, both th...

متن کامل

Regulation of the nicotinamide adenine dinucleotide- and nicotinamide adenine dinucleotide phosphate-dependent glutamate dehydrogenases of Saccharomyces cerevisiae.

Saccharomyces cerevisiae contains two distinct l-glutamate dehydrogenases. These enzymes are affected in a reciprocal fashion by growth on ammonia or dicarboxylic amino acids as the nitrogen source. The specific activity of the nicotinamide adenine dinucleotide phosphate (NADP) (anabolic) enzyme is highest in ammonia-grown cells and is reduced in cells grown on glutamate or aspartate. Conversel...

متن کامل

Role of NAD-linked glutamate dehydrogenase in nitrogen metabolism in Saccharomyces cerevisiae.

We cloned GDH2, the gene that encodes the NAD-linked glutamate dehydrogenase in the yeast Saccharomyces cerevisiae, by purifying the enzyme, making polyclonal antibodies to it, and using the antibodies to screen a lambda gt11 yeast genomic library. A yeast strain with a deletion-disruption allele of GDH2 which replaced the wild-type gene grew very poorly with glutamate as a nitrogen source, but...

متن کامل

Nitrogen repression of the allantoin degradative enzymes in Saccharomyces cerevisiae.

Saccharomyces cerevisiae can utilize allantoin as a sole nitrogen source by degrading it to ammonia, "CO(2)," and glyoxylate. We have previously shown that synthesis of the allantoin degradative enzymes is contingent upon the presence of allophanate, the last intermediate in the pathway. The reported repression of arginase by ammonia prompted us to ascertain whether or not the allantoin degrada...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 276 31  شماره 

صفحات  -

تاریخ انتشار 2001